LA35

The LA35 is a very quiet and powerful actuator, and provides a practical and cost-effective solution with low power consumption. The actuator is designed for a variety of both indoor and outdoor applications.

This TECHLINE ${ }^{\oplus}$ actuator comes with IC - Integrated controller.
For more information on our IC options, please see: www.linak.com/techline

Features:

- 12 or 24 V DC Permanent magnetic motor

Options in general:

- Large variety of back fixtures and piston rod eyes
- Thrust 6000 N in push and 4000 in pull
- Max. speed up to $19.5 \mathrm{~mm} / \mathrm{sec}$. depending on load and spindle pitch
- Stroke length from 100 to 600 mm
- Built-in endstop switches
- Stainless steel inner tube
- Protection class: IP66 (dynamic) and IP69K (static)
- Anti rotating piston rod eye
- Guided nut (only with 2 mm pitch)
- Integrated brake for high self-locking ability
- Exchangeable cables in different lengths
- Long life absolute feedback
- Safety nut in push
- Special anodised housing for extreme environments
- Potential free endstop signals
- IC options including:
- IC - Integrated Controller
- Hall sensor
- Analogue or digital feedback for precise positioning
- Endstop signals (not potential free)
- Ready signal for diagnostics

Usage:

- Duty cycle at 6000 N and 3 mm pitch is max. 10\%
- Ambient operating temperature: -25° to $+60^{\circ} \mathrm{C}$, full performance from $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Contents

Chapter 1

Specifications 3
Technical specifications. 4
Load versus Stroke Length
Stroke and built-in tolerances 5
LA35 Dimensions 5
LA35 Piston Rod Eyes 6
LA35 Back fixtures 7
LA35 Back fixture orientation 8
Cable dimensions 9-10
Y-cable dimensions 9
Power cable dimensions 9
Signal cable dimensions 10
Speed and current curves. 11-12
Chapter 2I/O specifications:
Actuator without feedback 13
Actuator with:
Potential free endstop signal output 14
Potential free endstop signals and relative positioning - Single Hall 15
Potential free endstop signals and absolute positioning - Analogue feedback. 16
IC. 17
Chapter 3
Environmental tests - Climatic 18-19
Environmental tests - Mechanical 20
Environmental tests - Electrical 20

Chapter 1

Specifications

Motor:	Permanent magnet motor 12 or 24 V *
Cable:	Motor: 2×14 AWG PVC cable
	Control: 6×20 AWG PVC cable **
Housing:	The housing is made of casted aluminium, coated for outdoor use and in harsh conditions
Spindle part:	Outer tube: Powder coated steel
	Inner tube: Stainless steel AISI304/SS2333
	Acme spindle: Trapezoidal spindle with high efficiency
Temperature range:	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	$-13^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$
	Full performance $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Weather protection:	Rated IP66 for outdoor use. Furthermore, the actuator can be washed down with a high-pressure cleaner (IP69K).
Noise level:	$48 \mathrm{~dB}(\mathrm{~A})$ measuring method DS/EN ISO 3743-1 actuator not loaded.
Compatibility:	The LA35 IC is compatible with SMPS-T160 (For combination possibilities,
	please see the User Manual for SMPS-T160)

* Modbus actuators only 24V - please see the

Modbus installation guide http://www.linak.com/techline/?id3=2363.
** Special control cabels for the Modbus actuator - please see the
Modbus installation guide http://www.linak.com/techline/?id3=2363.

Be aware of the following two symbols throughout this product data sheet:

Recommendations
Failing to follow these instructions can result in the actuator suffering damage or being ruined.
Additional information
Usage tips or additional information that is important in connection with the use of the actuator.

Technical specifications

LA35 with 12V motor

Order number	Push Max. (N)	Pull Max. (N)	Self- lock min. (N) Push	Self- lock min. (N) Pull	Pitch (mm/ spindle rev.)	* Typical speed (mm / s)		Standard stroke lengths (mm) in steps of 50 mm	* Typical amp. (A)	
						No load	Full load		No load	Full load
3510xx.	6000	4000	6000	4000	3	4.7	3.3	100-300	1.6	7.5
3520xx.	4000	4000	1500	1500	5	7.7	5.3	100-400	1.7	7.7
3521xx. push brake	4000	4000	2500	1500	5	7.2	5.4	100-400	3.2	7.8
3522xx. pull brake	4000	4000	1500	2500	5	6.9	5.9	100-400	4.2	8.4
3530xx.	1500	1500	750	750	9	14.0	12.3	100-500	1.7	5.9
3531xx. push brake	1500	1500	1000	750	9	14.2	12.6	100-500	2.9	5.5
3532xx. pull brake	1500	1500	750	1000	9	14.4	11.2	100-500	3.0	5.4
3540xx.	1000	1000	750	750	12	19.0	17.0	100-600	1.9	5.3
3541xx. push brake	1000	1000	1000	750	12	17.9	16.9	100-600	5.5	5.5
3542xx. pull brake	1000	1000	750	900	12	16.9	15.4	100-600	5.6	5.6

LA35 with 24V motor

Order number	Push Max. (N)	Pull Max. (N)	Self- lock min. (N) Push	Self- lock min. (N) Pull	Pitch (mm/ spindle rev.)	$\begin{gathered} \text { * Typical speed } \\ (\mathrm{mm} / \mathrm{s}) \\ \hline \end{gathered}$		Standard stroke lengths (mm) in steps of 50 mm	* Typical amp. (A)	
						No load	Full load		No load	Full load
3510xx.	6000	4000	6000	4000	3	5.1	4.0	100-300	0.9	4.2
3520xx.	4000	4000	1500	1500	5	8.3	6.6	100-400	0.8	4.8
3521xx. push brake	4000	4000	2500	1500	5	8.0	6.7	100-400	1.4	4.3
3522xx. pull brake	4000	4000	1500	2500	5	8.0	7.0	100-400	2.1	4.6
3530xx.	1500	1500	750	750	9	15.0	13.9	100-500	0.6	2.6
3531xx. push brake	1500	1500	1000	750	9	14.5	14.1	100-500	1.2	2.9
3532xx. pull brake	1500	1500	750	1000	9	14.7	13.9	100-500	1.5	3.0
3540xx.	1000	1000	750	750	12	19.5	18.9	100-600	0.9	2.8
3541xx. push brake	1000	1000	1000	750	12	18.9	17.8	100-600	1.3	2.8
3542xx. pull brake	1000	1000	750	900	12	18.7	18	100-600	1.5	2.9

* The typical values can have a variation of $\pm 20 \%$ on the current values and $\pm 10 \%$ on the speed values.

Measurements are made with an actuator in connection with a stable power supply and an ambient temperature at $20^{\circ} \mathrm{C}$.

To ensure maximum self-locking ability, please be sure that the motor is shorted when stopped.
Actuators with integrated controller have this feature incorporated.

- When using soft stop on a DC-motor, a short peak of higher voltage will be sent back towards the power supply. It is important when selecting the power supply that it does not turn off the output, when this backwards load dump occurs.

Load versus Stroke Length

- Safety factor 2.

Stroke and built-in tolerances

Platform options	Descriptions	Stroke tolerance	Example for 150 mm stroke	BID tolerance	Example for $\mathbf{3 5 0} \mathbf{~ m m ~ B I D ~}$
$35 X X X X X X X X X X X X X$	All variants	$+2 /-2 \mathrm{~mm}$	148 to 152 mm	$+2 /-2 \mathrm{~mm}$	348 to 352 mm

LA35 Dimensions

Stroke $=<300=200+$ Stroke

Stroke $>300=250+$ Stroke
Minimum installation dimension $=300 \mathrm{~mm}$

LA35 Piston rod eyes

Option "0" and "2"

Option "3" AISI 304
$\phi 28 \pm 0.3$

Option "4" AISI 304
$\varnothing 32$

Option "C" and "D"
AISI 304

Option "E" and "F"
Option "G" and "H"
Stainless steel Stainless steel

Cable dimensions

Y-cable dimensions:

*AWG: American Wire Gauge

Power cable dimensions:

Cable dimensions

Signal cable dimensions:

Violet:	$\varnothing 1.5 \mathrm{~mm}$
Black:	$\varnothing 1.5 \mathrm{~mm}$
Red:	$\varnothing 1.5 \mathrm{~mm}$
Yellow:	$\varnothing 1.5 \mathrm{~mm}$
Green:	$\varnothing 1.5 \mathrm{~mm}$
White:	$\varnothing 1.5 \mathrm{~mm}$

*AWG: American Wire Gauge

Speed and current curves - 12V motor

The values below are typical values and made with a stable power supply and an ambient temperature of $20^{\circ} \mathrm{C}$.

LA35-12V current vs load

LA35-12V speed vs load

Speed and current curves - 24V motor

The values below are typical values and made with a stable power supply and an ambient temperature of $20^{\circ} \mathrm{C}$.

LA35-24V current vs load

LA35-24V speed vs load

Chapter 2

I/O specifications: Actuator without feedback

Input/Output	Specification	Comments
Description	Permanent magnetic DC motor.	(12 or 24VDC (+/-) $12 \mathrm{~V} \pm 20 \%$ $24 \mathrm{~V} \pm 10 \%$ Under normal conditions: 12 V, max. 10A depending on load 24 V, max. 5A depending on load
Brown	To extend actuator: Connect Brown to positive Connect Brown to negative	
Blue	To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive	
Red	Not to be connected	
Black to be connected	Not to be connected	
Green	Not to be connected	
Yellow	Not to be connected	
Violet	Not to be connected	
White		

I/O specifications: Actuator with potential free endstop signal output

Input/Output	Specification	Comments
Description	The actuator is equipped with potential free endstop signals out. The micro switches are normally open.	12 or 24VDC (+/-) $12 \mathrm{~V} \pm 20 \%$ $24 \mathrm{~V} \pm 10 \%$ Under normal conditions: 12 V, max. 10A depending on load 24 V, max. 5A depending on load
Brown	To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative	
Blue	To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive	
Red	Potential free signal power supply (+) $10-28 V D C$	Switching capacity: Minimum 10mA Maximum 1A
Black	Not to be connected	
Green	Endstop signal out	Ontput voltage is the same as the input voltage
Yellow	Endstop signal in	
Vot to be connected	Not to be connected	

I/O specifications: Actuator with potential free endstop signals and relative positioning - Single Hall

Input/Output	Specification	Comments
Description	The actuator is equipped with potential free endstop signals and Single Hall that gives a relative positioning feedback signal when the actuator moves.	
Brown	$\begin{aligned} & 12 \text { or } 24 \mathrm{VDC}(+/-) \\ & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ Under normal conditions: 12V, max. 10A depending on load 24 V , max. 5A depending on load	To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative
Blue		To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive
White	Signal power supply (+) 10-28VDC	Current consumption: Max. 40 mA , also when the actuator is not running
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage is the same as the input voltage
Yellow	Endstop signal in	
Violet	Single Hall output (PNP) Movement per Single Hall pulse: 3 mm pitch $=0.38 \mathrm{~mm}$ per pulse 5 mm pitch $=0.63 \mathrm{~mm}$ per pulse 9 mm pitch $=1.13 \mathrm{~mm}$ per pulse 12 mm pitch $=1.5 \mathrm{~mm}$ per pulse Frequency: Frequency is $30-125 \mathrm{~Hz}$ on Single Hall output depending on load and spindle. Overvoltage on the motor can result in shorter pulses.	Output voltage min. $\mathrm{V}_{\mathbb{I}}-2 \mathrm{~V}$ Max. current output: 12mA Max. 680nF N.B. For more precise measurements, please contact LINAK A/S. Low frequency with a high load. Higher frequency with no load.
Red	Potential free signal power supply (+) 10-28VDC	Switching capacity: Minimum 10 mA Maximum 1A

I/O specifications: Actuator with potential free endstop signals and absolute positioning

- Analogue feedback

Input/Output	Specification	Comments
Description	The actuator is equipped with potential free endstop signals and an electronic circuit that gives an analogue feedback signal when the actuator moves.	12 or 24VDC (+/-) $12 \mathrm{~V} \pm 20 \%$ $24 \mathrm{~V} \pm 10 \%$ Under normal conditions: 12 V, max. 10A depending on load 24 V, max. 5A depending on load
Brown	To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative	
Blue	To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive	
White	Signal power supply (+) $10-28 \mathrm{VDC}$	Current consumption: Max. 40mA, also when the actuator is not run- ning
Black	Signal power supply GND (-)	

I/O specifications: Actuator with IC

Input/Output	Specification	Comments
Description	Easy to use interface with integrated power electronics (H-bridge). The actuator can also be equipped with electronic circuit that gives an absolute or relative feedback signal. The version with "IC option" cannot be operated with PWM (power supply).	
Brown	$12-24 \mathrm{VDC}+(\mathrm{VCC})$ Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 18A 24V, current limit 9A	Note: Do not change the power supply polarity on the brown and blue wires! Power supply GND (-) is electrically connected to the housing If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to maximum (no limits)
Blue	12-24VDC - (GND) Connect Blue to negative $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 18A 24V, current limit 9A	
Red	Extends the actuator	On/off voltages: $\begin{aligned} & >67 \% \text { of } V_{\text {IN }}=0 \mathrm{~N} \\ & <33 \% \text { of } \mathrm{V}_{\mathbb{I N}}=0 \mathrm{FF} \end{aligned}$ Input current: 10 mA
Black	Retracts the actuator	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\text {IN }}-2 \mathrm{~V}$ Source current max. 100 mA Endstop signals are NOT potential free
Yellow	Endstop signal in	
Violet	Analogue feedback: Configure any high/low combination between 0-10V or $0.5-4.5 \mathrm{~V}$ 0-10V (Option A) 0.5-4.5V (Option B)	Tolerances +/- 0.5 V Max. current output: 1mA Ripple max. 200 mV Transaction delay 100 ms Linear feedback 0.5\% It is recommendable to have the actuator to activate its limit switches on a regular basis, to ensure more precise positioning
	Single Hall output (PNP) Movement per Single Hall pulse: 3 mm pitch $=0.38 \mathrm{~mm}$ per pulse 5 mm pitch $=0.63 \mathrm{~mm}$ per pulse 9 mm pitch $=1.13 \mathrm{~mm}$ per pulse 12 mm pitch $=1.5 \mathrm{~mm}$ per pulse Frequency: Frequency is $30-125 \mathrm{~Hz}$ on Single Hall output depending on load and spindle. Overvoltage on the motor can result in shorter pulses.	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Max. current output: 12mA Max. 680nF N.B. For more precise measurements, please contact LINAK A/S. Low frequency with a high load. Higher frequency with no load.
White	Ready	The signal is constantly high when the actuator is in ready mode. Failure modes: The signal goes low when: - The current cuts off - The temperature is out of range (high duty cycle protection)

Chapter 3

Environmental tests - Climatic

Test	Specification	Comment
Cold test	EN60068-2-1 (Ab) EN60068-2-1 (Ad)	Storage at low temperature: Temperature: $-40^{\circ} \mathrm{C}$ Duration: 72h Not connected Tested at room temperature. Storage at low temperature: Temperature: $-25^{\circ} \mathrm{C}$ Duration: 12h Tested at low temperature.
Dry Heat	EN60068-2-2 (Bb) EN60068-2-2 (Bd)	Storage at high temperature: Temperature: $+90^{\circ} \mathrm{C}$ Duration: 72h Actuator is not powered during test Tested at room temperature. Storage at high temperature: Temperature: $+70^{\circ} \mathrm{C}$ Duration: 1,000h Actuator is not powered during test Tested at high temperature. Operating at high temperature: Temperature: $+60^{\circ} \mathrm{C}$ Int. max. 17\% Duration: 700h Actuator is activated Tested at high temperature.
Change of temperature	EN60068-2-14 (Na) EN60068-2-14 (Nb)	Rapid change of temperature: High temperature: $+100^{\circ} \mathrm{C}$ in 60 minutes Low temperature: $-30^{\circ} \mathrm{C}$ in 60 minutes Transition time: <10 seconds Duration: 100 cycles Actuator is not powered during test Tested at room temperature. Controlled change of temperature: Temperature change $5^{\circ} \mathrm{C}$ pr. minute High temperature: $+70^{\circ} \mathrm{C}$ in 60 minutes Low temperature: $-30^{\circ} \mathrm{C}$ in 30 minutes 130 minutes pr. cycle Duration: 1,000 cycles (90 days) Actuator is not powered during test. Tested at 250, 500 and 1,000 cycles at low and high temperatures.
Damp heat	EN60068-2-30 (Db) EN60068-2-3 (Ca)	Damp heat, Cyclic: Relative humidity: 93-98\% High temperature: $+55^{\circ} \mathrm{C}$ in 12 hours Low temperature: $+25^{\circ} \mathrm{C}$ in 12 hours Duration: 21 cycles * 24 hours Actuator is not powered during test Tested within 1 hour after condensation That means after the upper temperature has been reached. Damp heat, Steady state: Relative humidity: 93-95\% Temperature: $+40 \pm 2^{\circ} \mathrm{C}$ Duration: 56 days Actuator is not powered during test Tested within one hour after exposure.
Salt mist.	EN60068-2-52 (Kb)	Salt spray test: Salt solution: 5\% sodium chloride (NaCl) 4 spraying periods, each of 2 hours Humidity storage 7 days after each Actuator not powered during test Exposure time: 500 hours

Environmental tests - Climatic

Degrees of protection	EN60529 - IP66 DIN40050 - IP69K	IP6X - Dust: Dust-tight, No ingress of dust Actuator is not activated during test. IPX6 - Water: Ingress of water in quantities causing harmful effects is not allowed Duration: 100 litres pr. minute in 3 minutes Actuator is not activated during test. IPX6 - Connected actuator: Actuator is driving out and in for 3 min . $100(/ / \mathrm{min})$ jet of water is placed at the wiper ring for 3 min . IPX6 - Connected actuator and push 6000 (N) Actuator is driving out and in for 3 min . and push $6000(\mathrm{~N})$ at the end-pos. $100(1 / \mathrm{min}$.$) jet of water is placed at the wiper ring for 3 \mathrm{~min}$. High pressure cleaner: Water temperature: $+80^{\circ} \mathrm{C}$ Water pressure: 80 bar Spray angle: 45° Spray distance: 100 mm Duration: From any direction in 4×30 seconds Actuator is not activated during test Ingress of water in quantities causing harmful effects is not allowed.
	DUNK test	The actuator has been warmed up to $85^{\circ} \mathrm{C}$ for 4 hours After this it is cooled down in $20^{\circ} \mathrm{C}$ saltwater Cooling time: 2 hours Opened for checking salt deposit and water.
Chemicals	BS7691 / 96hours	Diesel 100\% Hydraulic oil 100\% Ethylene Glucol 50\% Urea Nitrogen saturated solution Liquid lime 10\% (Super-Cal) NPK Fertilizer (NPK 16-4-12) saturated Tested for corrosion.

Environmental tests - Mechanical

Test	Specification	Comment
Free fall	EN60068-2-64	Free fall from all sides: Height of fall: 0.8 meter onto linoleum covered concrete Actuator notpowered during test.
Vibration	Random vibration: Short time test: 6.29 g RMS Actuator is not connected Long time test: 7.21 g RMS Actuator is not powered during test Duration: 2 hours in each direction	
SN 60068-2-6 (Fc)	Sinus vibration: Frequency $5-200 \mathrm{~Hz}$ Displacement: 3.3 mm pp, B 25Hz Acceleration 4g Number of directions: 3 (X-Z-Y) Duration: 2 hours in each direction Actuator is not powered during test.	
Bump	EN60068-2-29 (Eb)	Bump test: Level: 25 g Duration: 6 milliseconds x 1000 times in each direction pr. axis Actuator is not powered during test.
Shock	EN60068-2-27 (Ea)	Shock test: Level: Half sinus 100 g Duration: 6 milliseconds Number of bumps: 3 shocks in each of 6 directions Actuator is not powered during test.

Environmental tests - Electrical

Test	Specification	Comment
Power supply		Operating voltages $+7 \mathrm{~V}-+27 \mathrm{~V}$ Over voltage $+29(\mathrm{~V}) / 5 \mathrm{~min}$. Reverse polarity $+7 \mathrm{and}+27(\mathrm{~V}) / 5 \mathrm{~min}$.
Electromagnetic fields	EN61000-4-3	$30 \mathrm{~V} / \mathrm{m}, 80 \% \mathrm{AM}, 1 \mathrm{kHz} 20-2.700 \mathrm{Mhz}$ $10 \mathrm{~V} / \mathrm{m}, 80 \% \mathrm{AM}, 1 \mathrm{kHz} 80-1000 \mathrm{Mh}$ $3 \mathrm{~V}, \mathrm{~m}, 80 \% \mathrm{AM}, 1 \mathrm{kHz} 1.4-2.0 \mathrm{GHz}$ $1 \mathrm{~V} / \mathrm{m}, 80 \% \mathrm{AM} 2.0-2.7 \mathrm{GHz}$
Fast transients	EN61000-4-4	$\pm 2 \mathrm{kV}$
Surge transients	EN61000-4-5	$\pm 2 \mathrm{kV}(42 \Omega$ output)
Radio frequency	EN61000-4-6	$10 \mathrm{Vrms}, 80 \%$ AM $0.15-80 \mathrm{MHz}$

(1) All electrical tests are conducted and radiated emission (EMC) tests.

