

LA36

The actuator LA36 is one of the most solid and powerful LINAK actuators, designed to operate under extreme conditions. The LA36 is a maintenance-free product with a long lifetime and a high IP degree. This high-quality actuator offers a very strong alternative to hydraulic solutions.

Features:

- 12, 24 or 36 V DC Permanent magnetic motor (IC only 12/24 V DC)
- Thrust from $500 \mathrm{~N}-10,000 \mathrm{~N}$ depending on gear ratio and spindle pitch
- Max. speed up to $160 \mathrm{~mm} / \mathrm{sec}$. depending on load and spindle pitch
- Stroke length from 100 to 999 mm
- Built-in endstop switches
- Non rotating piston rod eye
- Protection class: IP66 (dynamic) and IP69K (static)

Options in general:

- Mechanical overload protection through integrated slip clutch
- Exchangeable cables in different lengths
- Special anodised housing for extreme environments
- IECEx/ATEX certified for Zone 21
- Hall effect sensor
- Mechanical potentiometer (not with IC)
- IC options including:
- IC - Integrated Controller
- Integrated Parallel Controller
- Modbus, LIN bus and CAN bus communication
- Analogue or digital feedback for precise positioning
- Endstop signals
- PC configuration tool

Usage:

- Duty cycle at 600 mm stroke is max. 20\%
- Duty cycle at $601-999 \mathrm{~mm}$ stroke is max. 15%
- Duty cycle at $10,000 \mathrm{~N}$ is max. 5%
- Ambient operating temperature $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$, full performance from $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
- For IECEx/ATEX: Ambient operating temperature: $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

Contents

Chapter 1
Specifications 3
Technical specifications 4
LA36 Load versus Stroke Length 5
Stroke and built-in tolerances 5
LA36 Dimensions 6
Built-in dimensions 7
LA36 Piston Rod Eyes 8-9
LA36 Back fixtures 10-11
LA36 Back fixture orientation 12
Manual hand crank 13
Cable dimensions 13-14
Y-cable dimensions 13
Power cable dimensions 14
Signal cable dimensions 14
Speed and current curves 15-17
Chapter 2
//O specifications:
Actuator without feedback 18
Actuator with:
Endstop signal output 18
Endstop signals and relative positioning - Dual Hall 19
Endstop signals and relative positioning -Single Hall 20
Endstop signals and absolute positioning - Analogue feedback 21
Endstop signals and absolute positioning - Mechanical potentiometer feedback 22
Endstop signals and absolute positioning - PWM 23
IC Basic. 24
IC Advanced - with BusLink 25-26
Parallel 27
CAN bus 28
IC options overview 29
Feedback configurations available for IC Basic, IC Advanced and Parallel 30
Actuator configurations available for IC Basic, IC Advanced and Parallel 31
System combination possibilities for LA36 IC Advanced 32
Chapter 3
Environmental tests - Climatic. 33-34
Environmental tests - Mechanical 35
Environmental tests - Electrical 36

Chapter 1

Specifications

Motor:	Permanent magnet motor 12,24 , or 36V DC*
Cable:	Motor: 2×14 AWG PVC cable Control: 6×20 AWG PVC cable **
Gear ratio:	6 different gear ratios available in steel ($500 \mathrm{~N}, 1,700 / 2,600 \mathrm{~N}, 4,500 \mathrm{~N}$, and 6,800/10,000 N)
Slip clutch:	Mechanical overload protection through an integrated slip clutch
Brake:	Integrated brake ensures a high self-locking ability. The brake is deactivated when the actuator is powered in order to obtain a high efficiency
Hand crank:	As a standard feature the actuator can be operated manually
Housing:	The housing is made of casted aluminium, coated for outdoor use and in harsh conditions
Spindle part:	Outer tube: Extruded aluminium anodised Inner tube: Stainless steel AISI304/SS2333 Acme spindle: Trapezoidal spindle with high efficiency
Piston rod eye and back fixture:	When ordering AISI (304 and up) piston rod eye and back fixture, stainless steel screws are automatically included
Temperature range:	$-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ For IECEx/ATEX: $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ $-22^{\circ} \mathrm{F}$ to $+1499^{\circ} \mathrm{F}$ Full performance $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ $-13^{\circ} \mathrm{F}$ to $+1499^{\circ} \mathrm{F}$
Storage temperature:	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Weather protection:	Rated IP66 for outdoor use. Furthermore, the actuator can be washed down with a high-pressure cleaner (IP69K).
Noise level:	73 dB (A) measuring method DS/EN ISO 8746 actuator not loaded.

* Modbus actuators only 24 V - please see the

Modbus installation guide http://www.linak.com/techline/?id3=2363.
** Special control cabels for the Modbus actuator - please see the
Modbus installation guide http://www.linak.com/techline/?id3=2363.

Be aware of the following two symbols throughout this product data sheet:

Recommendations
Failing to follow these instructions can result in the actuator suffering damage or being ruined.
Additional information
Usage tips or additional information that is important in connection with the use of the actuator.

Technical specifications

LA36 with 12V motor

Order number	Push max. (N)	Pull max. (N)	*Self-lock min. (N) Push	*Self-lock min. (N) Pull	Pitch ($\mathrm{mm} / \mathrm{spindle}$ rev.)	*Typical speed (mm/s) Load		Standard stroke lengths (mm) In steps of 50 mm	*Typical amp. (A) 12 V	
						No	Full		No load	Full load
36080xxxxxxAxxxxHxxxxxxxxxxx	10000	10000	13000	13000	8	11	7	100-999**	4.5	22
36120xxxxxxAxxxxFxxxxxxxxxxx	2600	2600	3400	3400	12	40.7	30.6	100-999	4.5	21
36120xxxxxxAxxxxGxxxxxxxxxxx	4500	4500	5800	5800	12	23.1	17.8	100-999**	4.5	20.7
36120xxxxxxAxxxxHxxxxxxxxxxx	6800	6800	8800	8800	12	15.5	11.9	100-999**	4.5	21
36200xxxxxxAxxxxFxxxxxxxxxxx	1700	1700	2200	2200	20	68	52	100-999	4.5	22
36200xxxxxxAxxxxExxxxxxxxxx	500***	500***	1000	1000	20	160	135	100-999	4.5	20

LA36 with 24V motor

Order number	Push max. (N)	Pull max. (N)	*Self-lock min. (N) Push	*Self-lock min. (N) Pull	Pitch (mm/spindle rev.)	*Typical speed (mm/s) Load		Standard stroke lengths (mm) In steps of 50 mm	*Typical amp. (A) 24 V	
						No Full			No load	Full load
36080xxxxxxBxxxxHxxxxxxxxxxx	10000	10000	13000	13000	8	11	7	100-999**	2.4	10.4
36120xxxxxxBxxxxFxxxxxxxxxxx	2600	2600	3400	3400	12	41	32.3	100-999	2.4	10.4
$36120 x x x x x x B x x x x G x x x x x x x x x x x$	4500	4500	5800	5800	12	23.3	18.9	100-999**	2.4	10.2
36120xxxxxxBxxxxHxxxxxxxxxxx	6800	6800	8800	8800	12	15.7	12.7	100-999**	2.4	10.3
36200xxxxxxBxxxxFxxxxxxxxxx	1700	1700	2200	2200	20	68	52	100-999	2.4	10.3
36200xxxxxxBxxxxExxxxxxxxxxx	500***	$500 * * *$	1000	1000	20	160	135	100-999	2.4	10.0

LA36 with 36V motor

Order number	Push max. (N)	Pull max. (N)	*Self-lock min. (N) Push	*Self-lock min. (N) Pull	Pitch (mm/spindle rev.)	*Typical speed (mm/s) Load		Standard stroke lengths (mm) In steps of 50 mm	*Typical amp. (A) 36 V	
						No Full			No load	Full load
36080xxxxxxCxxxxHxxxxxxxxxxx	10000	10000	13000	13000	8	11	7	100-999**	2.0	8.0
36120xxxxxxCxxxxFxxxxxxxxxxx	2600	2600	3400	3400	12	41	33.5	100-999	2.0	8.0
36120xxxxxxCxxxxGxxxxxxxxxxx	4500	4500	5800	5800	12	23.3	19.1	100-999**	2.0	8.0
36120xxxxxxCxxxxHxxxxxxxxxxx	6800	6800	8800	8800	12	15.7	12.8	100-999**	2.0	8.0
36200xxxxxxCxxxxFxxxxxxxxxxx	1700	1700	2200	2200	20	68	52	100-999	2.0	8.0
36200xxxxxxCxxxxExxxxxxxxxxx	500***	500***	1000	1000	20	160	135	100-999	2.0	8.0

* The typical values can have a variation of $\pm 20 \%$ on the current values and $\pm 10 \%$ on the speed values.

Measurements are made with an actuator in connection with a stable power supply and an ambient temperature at $20^{\circ} \mathrm{C}$.
** There are limitations on the stroke length if you need full load, please see " LA36 Load v. Stroke Length"
*** Fully loaded actuators need a soft start in order to prevent the clutch from slipping when starting (see speed and current curves).

- Self locking ability

To ensure maximum self-locking ability, please be sure that the motor is shorted when stopped. Actuators with integrated controller provide this feature, as long as the actuator is powered.

- When using soft stop on a DC-motor, a short peak of higher voltage will be sent back towards the power supply. It is important when selecting the power supply that it does not turn off the output, when this backwards load dump occurs.

- For applications that only operate in pull the limitations are 999 mm stroke and $10,000 \mathrm{~N}$ load.
- Safety factor 2.

Stroke and built-in tolerances

End stop options E.g. $36 X X X X+? X X X X X X X$	Descriptions	Stroke tolerance	Example for 200 mm stroke	BID tolerance	Example for $\mathbf{2 0 0} \mathrm{mm}$ BID
$?=0$	Without endstop switches Mechanical endstop	$+/-2 \mathrm{~mm}$	198 to 202 mm	$+/-2 \mathrm{~mm}$	198 to 202 mm
$?=1$ to 4	With built-in limit switches	$+0 /-4 \mathrm{~mm}$	196 to 200 mm	$+/-4 \mathrm{~mm}$	196 to 204 mm
$?=7,8,9, A, B, C$	Integrated controller Modbus LIN bus CAN bus	$+0 /-6 \mathrm{~mm}$	194 to 200 mm	$+/-4 \mathrm{~mm}$	196 to 204 mm

LA36 Dimensions

Keep a clearance when mounting a bracket

(i)
When mounting a custom bracket on the moving part of the actuator, please observe the minimum clearance between bracket and cylinder top, when fully retracted, to avoid jamming and destruction of actuator drive train.

Cable conduits for an LA36 IECEx/ATEX actuator must be ordered separately, if needed.
To order a cable conduits kit, please choose one of the following item numbers:

Item number 0368536-00
(compatible with one cable)
The kit contains:
1 Cable gland cover
1 Gland nut: M20 x 1.5 (for 3/8" conduit)
1 Screw: DIN 912 M5 x 65
1 Blind plug: M20 x 1.5

Item number 0368535-00
(compatible with two cables)
The kit contains:
1 Cable gland cover
2 Gland nuts: M20 x 1.5 (for 3/8" conduit)
1 Screw: DIN 912 M5 x 65

Built-in dimensions

Piston rod	" 0 " /from the surface		" 1 "/ to the centre of the hole		" 2 A " / to the centre of the hole		"3" / from the surface	
Back fixture	$\begin{array}{r} \text { Stroke }<=300 \\ \text { Stroke }>300 \end{array}$		$\begin{aligned} & \text { Stroke }<=300 \\ & \text { Stroke }>300 \end{aligned}$		$\begin{array}{r} \text { Stroke }<=300 \\ \text { Stroke }>300 \end{array}$		$\begin{array}{r} \text { Stroke }<=300 \\ \text { Stroke }>300 \end{array}$	
" 0 " / from the surface	189	239	194	244	194	244	181	231
" 1 " and " 2 " / to the centre of the hole	195	245	200	250	200	250	187	237
" 3 " and " 4 " / to the centre of the hole	195	245	200	250	200	250	187	237
" 5 " / from the surface	180	230	185	235	185	235	173	223
" 6 " / from the surface	180	230	185	235	185	235	173	223
"7" and "8" / to the centre of the hole	195	245	200	250	200	250	187	237
" A " and " B " / to the centre of the hole	195	245	200	250	200	250	187	237
"C" and "D" / to the centre of the hole	195	245	200	250	200	250	187	237

Piston rod	" 4 " /from the surface		"5" / to the centre of the hole		"C" / to the centre of the hole		" D " / to the centre of the hole	
Back fixture	$\begin{gathered} \text { Stroke }<=300 \\ \text { Stroke }>300 \end{gathered}$		$\begin{array}{r} \text { Stroke }<=300 \\ \text { Stroke }>300 \end{array}$		$\begin{gathered} \text { Stroke }<=300 \\ \text { Stroke }>300 \end{gathered}$		$\begin{gathered} \text { Stroke }<=300 \\ \text { Stroke }>300 \end{gathered}$	
" 0 " / from the surface	181	231	194	244	209	259	209	259
" 1 " and "2" / to the centre of the hole	187	237	200	250	215	265	215	265
" 3 " and " 4 " / to the centre of the hole	187	237	200	250	215	265	215	265
" 5 " / from the surface	172	222	185	235	200	250	200	250
" 6 " / from the surface	172*	222*	185	235	200	250	200	250
"7" and "8" / to the centre of the hole	187	237	200	250	215	265	215	265
"A" and "B" / to the centre of the hole	187	237	200	250	215	265	215	265
"C" and "D" / to the centre of the hole	187	237	200	250	215	265	215	265

* These built-in dimensions are measured according to the illustration below.

LA36 Piston Rod Eyes

When ordering AISI (304 and up) piston rod eye and back fixture, stainless steel screws are automatically included.

Option "0"
AISI 303

SECTION AAA

Option "2"
Free cutting steel galvanised surface

Option "4"
AISI 303

Option " 1 "
Free cutting steel galvanised surface

$\varnothing 12.9 \pm 0.15$

Option "3"
AIS 303

Option "5"
Free cutting steel galvanised surface

Option "A"
AIS 304

Option "C"
10KN = Max. load 6800 N in pull AIS 304

The Piston Rod Eye is only allowed to turn 0-90 degrees.

Option "B"
AIS 304

Option "D" AIS 304

SECTION B-B

Option " 3 " and " 4 "
Free cutting steel galvanised surface

Option " 1 " and " 2 "
Free cutting steel galvanised surface

Option "5"
AISI 303

Option " 7 " and " 8 "
Free cutting steel galvanised surface

Option "C" and "D"

AISI 304

Option "A" and "B"
AISI 304

LA36 Back fixture orientation

NB. All with tolerance of $\pm 4^{\circ}$

Manual hand crank

The manual hand crank can be used in the case of power failure.
The cover over the Allen Key socket must be unscrewed before the Allen Key can be inserted and the Hand Crank operated.

Hand Crank Torque: 6-8 Nm
Hand Crank rpm: Max. 65
Piston Rod movement per turn

	8 mm	12 mm	20 mm
Gear A	-	11 mm	18 mm
Gear B	-	6 mm	10 mm
Gear C	3 mm	4 mm	7 mm
Gear F	-	-	27 mm

- The power supply has to be disconnected during manual operation.
- If the actuator is operated as a Hand crank, it must only be operated by hand, otherwise there is a potential risk of overloading and hereby damaging the actuator.

Cable dimensions

Y-cable dimensions:

Cable dimensions

Power cable dimensions:

Signal cable dimensions:

Violet:	$\varnothing 1.5 \mathrm{~mm}$
Black:	$\varnothing 1.5 \mathrm{~mm}$
Red:	$\varnothing 1.5 \mathrm{~mm}$
Yellow:	$\varnothing 1.5 \mathrm{~mm}$
Green:	$\varnothing 1.5 \mathrm{~mm}$
White:	$\varnothing 1.5 \mathrm{~mm}$

Speed and current curves - 12V motor

The values below are typical values and made with a stable power supply and an ambient temperature of $20^{\circ} \mathrm{C}$.

LA36 12V motor current vs. load

LA36 12V motor speed vs. load

All measurements above describe the spindle pitch (e.g. 20 mm) and the gear type (e.g. E gear) of the actuator.
Speed and current are based on a nominal power supply of $12,24,36$ VDC.

When ordering LA36F

When purchasing the LA36 actuator with fast gear and slide for the end-stop function, the customer has been informed that there is an increased risk that the activation arm for end-stop can be damaged during use, especially if the actuator runs to limit switch without load, both in the inner or outer position. A defective activation arm will inevitably lead to an inoperative endstop function.

Speed and current curves - 24V motor

The values below are typical values and made with a stable power supply and an ambient temperature of $20^{\circ} \mathrm{C}$.

LA36 24V motor current vs. load

LA36 24V motor speed vs. load

All measurements above describe the spindle pitch (e.g. 20 mm) and the gear type (e.g. E gear) of the actuator.
Speed and current are based on a nominal power supply of $12,24,36$ VDC.

When ordering LA36F
When purchasing the LA36 actuator with fast gear and slide for the end-stop function, the customer has been informed that there is an increased risk that the activation arm for end-stop can be damaged during use, especially if the actuator runs to limit switch without load, both in the inner or outer position. A defective activation arm will inevitably lead to an inoperative end-stop function.

Speed and current curves - 36V motor

The values below are typical values and made with a stable power supply and an ambient temperature of $20^{\circ} \mathrm{C}$.

LA36 36V motor current vs. load

LA36 36V motor speed vs. load

All measurements above describe the spindle pitch (e.g. 20 mm) and the gear type (e.g. E gear) of the actuator.
When ordering LA36F
When purchasing the LA36 actuator with fast gear and slide for the end-stop function, the customer has been informed that there is an increased risk that the activation arm for end-stop can be damaged during use, especially if the actuator runs to limit switch without load, both in the inner or outer position. A defective activation arm will inevitably lead to an inoperative end-stop function.

Chapter 2

I/O specifications: Actuator without feedback

Input/Output	Specification	Comments
Description	Permanent magnetic DC motor.	
Brown	12,24 or 36VDC (+/-) $12 \mathrm{~V} \pm 20 \%$ $24 \mathrm{~V} \pm 10 \%$ $36 \mathrm{~V} \pm 10 \%$ Under normal conditions: 12 V, max. 26A depending on load 24 V, max. 13A depending on load 36 V, max. 10A depending on load	To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative
Blue	To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive	
Red	Not to be connected	
Black	Not to be connected	
Green	Not to be connected	
Yellow	Not to be connected	
Violet	Not to be connected	

I/O specifications: Actuator with endstop signal output

Input/Output	Specification	Comments
Description	The actuator can be equipped with electronically controlled endstop signals out.	
Brown	$\begin{aligned} & 12,24 \text { or } 36 \mathrm{VDC}(+/-) \\ & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \\ & 36 \mathrm{~V} \pm 10 \% \end{aligned}$	To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative
Blue	Under normal conditions: 12V, max. 26A depending on load 24V, max. 13A depending on load 36V, max. 10A depending on load	To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive
Red	$\begin{aligned} & \text { Signal power supply (+) } \\ & \text { 12-24VDC } \end{aligned}$	Current consumption: Max. 40 mA , also when the actuator is not running
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Source current max. 100 mA NOT potential free
Yellow	Endstop signal in	
Violet	Not to be connected	
White	Not to be connected	

I/O specifications: Actuator with endstop signals and relative positioning - Dual Hall

Input/Output	Specification		Comments
Description	The actuator can be equipped with Dual Hall that gives a relative positioning feedback signal when the actuator moves.		Hall A $\square \square$ Hall B
Brown	12, 24 or 36VDC (+/-) $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \\ & 36 \mathrm{~V} \pm 10 \% \end{aligned}$ Under normal conditions: 12V, max. 26A depending on load 24V, max. 13A depending on load 36 V , max. 10A depending on load		To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative
Blue			To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive
Red	$\begin{aligned} & \text { Signal power supply (+) } \\ & \text { 12-24VDC } \end{aligned}$		Current consumption: Max. 40 mA , also when the actuator is not running
Black	Signal power supply GND (-)		
Green	Hall B	Movement per single hall pulse: LA362C Actuator $=0.4 \mathrm{~mm}$ per pulse LA363C Actuator $=0.7 \mathrm{~mm}$ per pulse LA363B Actuator $=1.0 \mathrm{~mm}$ per pulse	The Hall sensor signals are generated by the turning of the actuator gearing. These signals can be fed into a PLC (Programmable Logic Controller). In the PLC the quadrature signals can be used to register the direction and position of the piston rod. Output voltage min. $\mathrm{V}_{\mathbb{I N}}-2 \mathrm{~V}$ Current output 12mA Overvoltage on the motor can result in shorter pulses. N.B. For more precise measurements, please contact LINAK A/S.
Yellow	Hall A	LA365A Actuator $=2.9 \mathrm{~mm}$ per pulse	
Violet	Endstop signal in		Output voltage min. $\mathrm{V}_{1 \mathrm{~N}}-2 \mathrm{~V}$ Source current max. 30 mA NOT potential free
White	Endstop signal out		
Diagram of Dual Hall:		Hall A Hall B	 Fig. 1

I/O specifications: Actuator with endstop signals and relative positioning - Single Hall

Input/Output	Specification	Comments
Description	The actuator can be equipped with Single Hall that gives a relative positioning feedback signal when the actuator moves.	
Brown	$\begin{aligned} & 12,24 \text { or } 36 \mathrm{VDC}(+/-) \\ & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \\ & 36 \mathrm{~V} \pm 10 \% \end{aligned}$	To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative
Blue	Under normal conditions: 12V, max. 26A depending on load 24V, max. 13A depending on load 36 V , max. 10A depending on load	To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive
Red	Signal power supply (+) 12-24VDC	Current consumption: Max. 40 mA , also when the actuator is not running
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Source current max. 100 mA NOT potential free
Yellow	Endstop signal in	
Violet	Single Hall output (PNP) Movement per Single Hall pulse: LA362C: Actuator $=0.1 \mathrm{~mm}$ per pulse LA363C: Actuator $=0.2 \mathrm{~mm}$ per pulse LA363B: Actuator $=0.3 \mathrm{~mm}$ per pulse LA363A: Actuator $=0.4 \mathrm{~mm}$ per pulse LA365A: Actuator $=0.7 \mathrm{~mm}$ per pulse Frequency: Frequency is $30-125 \mathrm{~Hz}$ on Single Hall output depending on load and spindle.Overvoltage on motor can result in shorter pulses.	Output voltage min. $\mathrm{V}_{\mathbb{I}}-2 \mathrm{~V}$ Max. current output: 12 mA Max. 680nF N.B. For more precise measurements, please contact LINAK A/S. Low frequency with a high load. Higher frequency with no load.
	Diagram of Single Hall: Input	Micro - Processor Fig. 2
White	Not to be connected	

I/O specifications: Actuator with endstop signals and absolute positioning - Analogue feedback

Input/Output	Specification	Comments
Description	The actuator can be equipped with electronic circuit that gives an analogue feedback signal when the actuator moves.	
Brown	$\begin{aligned} & 12,24 \text { or } 36 \mathrm{VDC}(+/-) \\ & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \\ & 36 \mathrm{~V} \pm 10 \% \end{aligned}$	To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative
Blue	Under normal conditions: 12V, max. 26A depending on load 24V, max. 13A depending on load 36 V , max. 10A depending on load	To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive
Red	Signal power supply (+) $12-24 V D C$ 12-24VDC	Current consumption:
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\text {IN }}-2 \mathrm{~V}$
Yellow	Endstop signal in	NOT potential free
Violet	Analogue feedback $\begin{aligned} & 0-10 \mathrm{~V} \\ & 0.5-4.5 \mathrm{~V} \end{aligned}$	Tolerances +/- 0.2 V Max. current output: 1 mA Ripple max. 200mV Transaction delay 20 ms Linear feedback 0.5\% It is recommendable to have the actuator to activate its limit switches on a regular basis, to ensure more precise positioning
White	Not to be connected	

I/O specifications: Actuator with endstop signals and absolute positioning Mechanical potentiometer feedback

Input/Output	Specification	Comments
Description	The actuator can be equipped with a mechanical potentiometer, 10 kohm.	Bourns 0-10 kohm, 5\%, 10-Turn Type: 3540 Wirewound
Brown	$\begin{aligned} & 12,24 \text { or } 36 \mathrm{VDC}(+/-) \\ & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \\ & 36 \mathrm{~V} \pm 10 \% \end{aligned}$	To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative
Blue	Under normal conditions: 12V, max. 26A depending on load 24V, max. 13A depending on load 36 V , max. 10A depending on load	To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive
Red	Signal power supply (+) $12-24 \mathrm{VDC}$	For endstop signals
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\text {IN }}-2 \mathrm{~V}$
Yellow	Endstop signal in	NOT potential free
Violet	Mechanical potentiometer output Output range with 8 mm spindle pitch: 0 kohm $=0 \mathrm{~mm}$ stroke 10 kohm $=333 \mathrm{~mm}$ stroke Output range with 12 mm spindle pitch: 0 kohm $=0 \mathrm{~mm}$ stroke 10 kohm $=500 \mathrm{~mm}$ stroke Output range with 20 mm spindle pitch: 0 kohm = 0mm stroke 10 kohm $=833 \mathrm{~mm}$ stroke	+10 V or other value Output protection: 1 kohm protection resistor Linearity: $\pm 0.25 \%$
White	Not to be connected	

It is recommended that the actuator activates its limit switches on a regular basis, to ensure more precise positioning. The actuator can also go into the position lost state. When the actuator goes in position lost state, the feedback level will remain the highest level until the actuator is initiated. For instance, if feedback is $0-10 \mathrm{~V}$, the feedback level will remain 10 V until the actuator is initialised. Both physical end stop switches need to be activated for correct initialisation of the feedback. There is no rule as to which one needs to be activated first.
(1) Please note that Potentiometer is not possible on variants with fast gear (Spindle pitch $20 \mathrm{~mm}, \mathrm{H}$ Gear).

I/O specifications: Actuator with endstop signals and absolute positioning - PWM

Input/Output	Specification	Comments
Description	The actuator can be equipped with electronic circuit that gives an analogue feedback signal when the actuator moves.	
Brown	$\begin{aligned} & 12,24 \text { or } 36 \mathrm{VDC}(+/-) \\ & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \\ & 36 \mathrm{~V} \pm 10 \% \end{aligned}$	To extend actuator: Connect Brown to positive To retract actuator: Connect Brown to negative
Blue	Under normal conditions: 12V, max. 26A depending on load 24V, max. 13A depending on load 36 V , max. 10A depending on load	To extend actuator: Connect Blue to negative To retract actuator: Connect Blue to positive
Red	$\begin{aligned} & \text { Signal power supply (+) } \\ & \text { 12-24VDC } \end{aligned}$	Current consumption:
Black	Signal power supply GND (-)	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$
Yellow	Endstop signal in	NOT potential free
Violet	Digital output feedback (PNP) $\begin{aligned} & 10-90 \% \\ & 20-80 \% \end{aligned}$	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Tolerances +/- 2\% Max. current output: 12mA Frequency: 75Hz It is recommendable to have the actuator to activate its limit switches on a regular basis, to ensure more precise positioning
White	Not to be connected	

It is recommended that the actuator activates its limit switches on a regular basis, to ensure more precise positioning. The actuator can also go into the position lost state. When the actuator goes in position lost state, the feedback level will remain the highest level until the actuator is initiated. For instance, if feedback is $0-10 \mathrm{~V}$, the feedback level will remain 10 V until the actuator is initialised. Both physical end stop switches need to be activated for correct initialisation of the feedback. There is no rule as to which one needs to be activated first.

I/O specifications: Actuator with IC Basic

Input/Output	Specification	Comments
Description	Easy to use interface with integrated power electronics (H -bridge). The actuator can also be equipped with electronic circuit that gives an absolute or relative feedback signal. The version with "IC option" cannot be operated with PWM (power supply).	
Brown	$12-24 \mathrm{VDC}+(\mathrm{VCC})$ Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 30A 24 V , current limit 20A	Note: Do not change the power supply polarity on the brown and blue wires! Power supply GND (-) is electrically connected to
Blue	12-24VDC - (GND) Connect Blue to negative $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12 V , current limit 30A 24 V , current limit 20A	the housing If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to 30A
Red	Extends the actuator	On/off voltages: $\begin{aligned} & >67 \% \text { of } \mathrm{V}_{\mathbb{N}}=0 \mathrm{~N} \\ & <33 \% \text { of } \mathrm{V}_{\mathbb{N}}=0 \mathrm{FF} \end{aligned}$ Input current: 10mA
Black	Retracts the actuator	
Green	Not to be connected	
Yellow	Not to be connected	
Violet	Analogue feedback $0-10 \mathrm{~V}$	Standby power consumption: 12V, 60 mA $24 \mathrm{~V}, 45 \mathrm{~mA}$ Ripple max. 200mV Transaction delay 20 ms Linear feedback 0.5\% Max. current output: 1 mA It is recommendable to have the actuator to activate its limit switches on a regular basis, to ensure more precise positioning
	Single Hall output (PNP) Movement per Single Hall pulse: LA362C: Actuator $=0.1 \mathrm{~mm}$ per count LA363C: Actuator $=0.2 \mathrm{~mm}$ per count LA363B: Actuator $=0.3 \mathrm{~mm}$ per count LA363A: Actuator $=0.4 \mathrm{~mm}$ per count LA365A: Actuator $=0.7 \mathrm{~mm}$ per count Frequency: Frequency is $30-125 \mathrm{~Hz}$ on Single Hall output depending on load and spindle. Overvoltage on the motor can result in shorter pulses	Output voltage min. $\mathrm{V}_{\mathbb{I N}}-2 \mathrm{~V}$ Max. current output: 12 mA Max. 680nF
White	Signal GND	

I/O specifications: Actuator with IC Advanced - with BusLink

Input/Output	Specification	Comments
Description	Easy to use interface with integrated power electronics (H-bridge). The actuator can also be equipped with electronic circuit that gives an absolute or relative feedback signal. IC Advanced provides a wide range of possibilities for customisation. The version with "IC option" cannot be operated with PWM (power supply).	
Brown	12-24VDC + (VCC) Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12 V , current limit 30A 24V, current limit 20A	Note: Do not change the power supply polarity on the brown and blue wires! Power supply GND (-) is electrically connected to the housing Current limit levels can be adjusted through BusLink If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to 30A
Blue	12-24VDC - (GND) Connect Blue to negative $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12 V , current limit 30A 24 V , current limit 20A	
Red	Extends the actuator	On/off voltages: $\begin{aligned} & >67 \% \text { of } \mathrm{V}_{\text {IN }}=\mathrm{ON} \\ & <33 \% \text { of } \mathrm{V}_{\text {IN }}=0 \mathrm{FF} \end{aligned}$ Input current: 10 mA Actie filter time: reaction time: $52,6 \mathrm{~ms}$ before movement
Black	Retracts the actuator	
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\text {IN }}-2 \mathrm{~V}$ Source current max. 100mA Endstop signals are NOT potential free. Endstop signals can be configured with BusLink software according to any position needed. When configuring virtual end stop, it is not necessary to choose the position feedback EOS and Virtual end stop will work even when feedback is not chosen
Yellow	Endstop signal in	

I/O specifications: Actuator with IC Advanced - with BusLink

Input/Output	Specification	Comments
Violet	Analogue feedback ($0-10 \mathrm{~V}$): Configure any high/low combination between 0-10V	Ripple max. 200 mV Transaction delay 20 ms Linear feedback 0.5\% Max. current output. 1 mA
	Single Hall output (PNP) Movement per Single Hall pulse: LA362C: Actuator $=0.1 \mathrm{~mm}$ per count LA363C: Actuator $=0.2 \mathrm{~mm}$ per count LA363B: Actuator $=0.3 \mathrm{~mm}$ per count LA363A: Actuator $=0.4 \mathrm{~mm}$ per count LA365A: Actuator $=0.7 \mathrm{~mm}$ per count Frequency: Frequency is $30-125 \mathrm{~Hz}$ on Single Hall output depend- ing on load and spindle. Overvoltage on the motor can result in shorter pulses	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Max. current output: 12 mA Max. 680nF Open collector source current max. 12mA
	Digital output feedback PWM: Configure any high/low combination between 0-100\%	Output voltage min. $\mathrm{V}_{\text {IN }}-2 \mathrm{~V}$ Frequency: $75 \mathrm{~Hz} \pm 10 \mathrm{~Hz}$ as standard, but this can be customised. Duty cycle: Any low/high combination between 0 and 100 percent. Open collector source current max. 12mA
	Analogue feedback ($4-20 \mathrm{~mA}$): Configure any high/low combination between 4-20mA	Tolerances $\pm 0.2 \mathrm{~mA}$ Transaction delay 20 ms Linear feedback 0.5\% Output: Source Serial resistance: 12 V max. 300 ohm 24 V max. 900 ohm
	All absolute value feedbacks ($0-10 \mathrm{~V}, \mathrm{PWM}$ and 4-20mA)	Standby power consumption: $\begin{aligned} & 12 \mathrm{~V}, 60 \mathrm{~mA} \\ & 24 \mathrm{~V}, 45 \mathrm{~mA} \end{aligned}$ It is recommendable to have the actuator to activate its limit switches on a regular basis, to ensure more precise positioning
White	Signal GND	

It is recommended that the actuator activates its limit switches on a regular basis, to ensure more precise positioning. The actuator can also go into the position lost state. When the actuator goes in position lost state, the feedback level will remain the highest level until the actuator is initiated. For instance, if feedback is $0-10 \mathrm{~V}$, the feedback level will remain 10 V until the actuator is initialised. Both physical end stop switches need to be activated for correct initialisation of the feedback. There is no rule as to which one needs to be activated first.

The BusLink software tool is available for IC Advanced and can be used for:
Diagnostics, manual run and configuration.
Please note that the BusLink cables must be purchased separately from the actuator!

Item number for BusLink cable kit: 0367999 (adaptor + USB2Lin)

I/O specifications: Actuator with Parallel

Input/Output	Specification	Comments
Description	Parallel drive of up to 8 actuators. A master actuator with an integrated H -bridge controller controls up to 7 slaves. The version with "IC option" cannot be operated with PWM (power supply).	
Brown	$12-24 \mathrm{VDC}+(\mathrm{VCC})$ Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 30A 24V, current limit 20A	Note: Do not change the power supply polarity on the brown and blue wires! The parallel actuators can run on one OR separate power supplies Power supply GND (-) is electrically connected to the housing
Blue	12-24VDC - (GND) Connect Blue to negative $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 30A 24V, current limit 20A	Current limit levels can be adjusted through BusLink (only one actuator at a time for parallel) If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to 30 A
Red	Extends the actuator	On/off voltages: $\begin{aligned} & >67 \% \text { of } \mathrm{V}_{\text {IN }}=0 \mathrm{~N} \\ & <33 \% \text { of } \mathrm{V}_{\text {IN }}=0 \mathrm{FF} \end{aligned}$ Input current: 10 mA
Black	Retracts the actuator	applied. You can either choose to connect the signal cable to one actuator OR you can choose to connect the signal cable to each actuator on the line. Either way this will ensure parallel drive
Green	Endstop signal out	Output voltage min. $\mathrm{V}_{\mathbb{N}}-2 \mathrm{~V}$ Source current max. 100 mA
Yellow	Endstop signal in	Endstop signals are NOT potential free. Endstop signals can be configured with BusLink software according to any position needed
Violet	Parallel communication: Violet cords must be connected together	Standby power consumption: $\begin{aligned} & 12 \mathrm{~V}, 60 \mathrm{~mA} \\ & 24 \mathrm{~V}, 45 \mathrm{~mA} \end{aligned}$ No feedback available during parallel drive
White	Signal GND: White cords must be connected together	

The BusLink software tool is available for Parallel and can be used for:
Diagnostics, manual run and configuration.
Please note that the BusLink cables must be purchased separately from the actuator!
Item number for BusLink cable kit: 0367999 (adaptor + USB2Lin)

I/O specifications: Actuator with CAN bus

Input/Output	Specification	Comments
Description	Compatible with the SAE J1939 standard. Uses CAN messages to command movement, setting parameters and to deliver feedback from the actuator. Actuator identification is provided, using standard J1939 address claim or fixed addresses.	
Brown	$12-24 \mathrm{VDC}+(\mathrm{VCC})$ Connect Brown to positive $\begin{aligned} & 12 \mathrm{~V} \pm 20 \% \\ & 24 \mathrm{~V} \pm 10 \% \end{aligned}$ 12V, current limit 30A 24V, current limit 20A	Note: Do not swap the power supply polarity on the brown and blue wires! Power supply GND (-) is electrically connected to the housing Current limit levels can be adjusted through BusLink
Blue	12-24VDC - (GND) Connect Blue to negative	If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to 30A
Red	Extends the actuator	On/off voltages:$\begin{aligned} & >67 \% \text { of } \mathrm{V}_{\text {IN }}=0 \mathrm{~N} \\ & <33 \% \text { of } \mathrm{V}_{\text {IN }}=0 \mathrm{FF} \end{aligned}$
Black	Retracts the actuator	
Green	CAN_L	LA36 with CAN bus does not contain the 120Ω terminal resistor. The physical layer is in accordance with J1939-15. * Speed: Autobaud up to 500 kbps (Prototypes: 250 kbps)
		Max bus length: 40 meters
Yellow	CAN_H	Max stub length: $\quad 3$ meters Max node count: 10 (can be extended to 30 under certain circumstances) Wiring: Unshielded twisted pair Cable impedance: $120 \Omega(\pm 10 \%)$
Violet	Service interface	Only BusLink can be used as service interface. Use green adapter cable
White	Service interface GND	

* J1939-15 refers to Twisted Pair and Shielded cables. The standard/default cables delivered with LA36 CAN do not comply with this.

The BusLink software tool (v.2.0 or later versions) is available for CAN bus and can be used for:
Diagnostics, manual run and configuration.
BusLink LIN is only intended for BusLink service interface.

Please note that the BusLink cables must be purchased separately from the actuator!
Item number for BusLink cable kit: 0367997 (adaptor + USB2Lin)

IC options overview

	Basic	Advanced	Parallel	LIN bus	CAN bus
Control					
$12 \mathrm{~V}, 24 \mathrm{~V}$ supply	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
H-bridge	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Manual drive in/out	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
EOS in/out	-	\checkmark	\checkmark	\checkmark	-
Soft start/stop	\checkmark	\checkmark	\checkmark	\checkmark	

BusLink $\langle\cdots \cdot\rangle$					
Service counter	-	\checkmark	\checkmark	$\sqrt{ }$	\checkmark
Custom soft start/stop	-	$V^{* * *}$	$V^{* * *}$	$\checkmark^{* * *}$	$V^{* * *}$
Custom current limit	-	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
Speed setting	-	\checkmark	\checkmark	\checkmark	\checkmark
Virtual end stop		\checkmark	\checkmark	\checkmark	\checkmark

* Configure any high/low combination between $0-10 \mathrm{~V}$
** Configure any high/low combination between 4-20mA
*** Configure any value between $0-30$ s

Feedback configurations available for IC Basic, IC Advanced and Parallel

	Pre-configured	Customised range	Pros	Cons
None			N/A	N/A
PWM Feedback	$10-90 \%$ 75 Hz	$0-100 \%$ $75-150 \mathrm{~Hz}$	Suitable for long distance transmission. Effectual immunity to electrical noise.	More complex processing required, compared to AFV and AFC.
Single Hall*	N/A	N/A	Suitable for long distance transmission.	No position indication.
Analogue Feedback Voltage (AFV)*	$0-10 \mathrm{~V}$	Any combination, going negative or positive. E.g. $8.5-2.2 V$ over a full stroke.	High resolution. Traditional type of feedback suitable for most PLCs. Easy faultfinding. Independent on stroke length, compared to a traditional mechanical potentiometer.	Not recommended for applications with long distance cables or environments exposed to electrical noise.
Analogue Feedback Current (AFC)	4-20mA	Any combination, going negative or positive. E.g. $5.5-18 m A$ over a full stroke.	High resolution. Better immunity to long cables and differences in potentials than AFV. Provides inherent error condition detection. Independent on stroke length, compared to a traditional mechanical potentiometer.	Not suitable for signal isolation. Only to be used on differential input card. Do not use single ended input card.
Do NOT connect or put the white wire anywhere near GND, as this will create ground loops, disturb- ing the mA-signal.				
Endstop signal in/out**	At physical end stops. Default for IC Advanced.	Any position. (Not IC Basic)	Can be set at any position over the full stroke length. (Not IC Basic)	Only one endstop can be
(ustomised.				
(Not IC Basic)				

** IC Basic feedback configurations available: EOS
** Parallel feedback configurations available: EOS

Actuator configurations available for IC Basic, IC Advanced and Parallel

	Pre-configured	Customised range (Not IC Basic)	Description
Current limit inwards	20A for both current limit directions. (When the current outputs are at zero, it means that they are at maximum value 20A). Be aware: When the actuator comes with current cut-off limits that are factory pre-configured for certain values, the pre-configured values will be the new maximum level of current cut-off. This means that if the current cut-off limits are pre-configured to 14A, it will not be possible to change the current limits through BusLink to go higher than 14A.	Recommended range: 4A to 20A If the temperature drops below $0^{\circ} \mathrm{C}$, all current limits will automatically increase to approximately 30A, indenpendent of the pre-configured value.	The actuator's unloaded current consumption is very close to 4A, and if the current cut-off is customised below 4A there is a risk that the actuator will not start. The inwards and outwards current limits can be configured separately and do not have to have the same value.
Max. speed inwards/ outwards	100% equal to full performance	Lowest recommended speed at full load: 60\% It is possible to reduce the speed below 60\%, but this is dependable on load, power supply and the environment.	The speed is based on a PWM principle, meaning that 100% equals the voltage output of the power supply in use, and not the actual speed.
Virtual endstop inwards	Omm for both virtual enstop directions. (When the virtual end-	It is only possible to run the actuator with one virtual endstop, either inwards or outwards.	The virtual endstop positions are based on hall sensor technology, meaning that the positioning needs to be initialised from
Virtual endstop outwards	stops are at zero, it means that they are not in use).	Scaling of feedback when choosing analogue feedback. All Absolute feedback levels must follow the chosen virtual end-stop, if any are set. When virtual end-stop is chosen through the bus link, the actuator will need initialisation and feedback will be adjusted accordingly to the virtual end-stop.	time to time. One of the physical endstops must be available for initialisation.
Soft stop inwards Soft stop outwards	0.3 sec. for both soft stop directions.	0.3 sec . to 30 sec . 0 sec. can be chosen for hard stop.	It is not possible to configure values between 0.01 sec . to 0.29 sec . This is due to the back-EMF from the motor (increasing the voltage). Be aware that the soft stop value equals the deacceleration time after stop command.
Soft start inwards Soft start outwards	0.3 sec . for both soft start directions.	0 sec . to 30 sec .	Be aware that the soft start value equals the acceleration time after start command. To avoid stress on the actuator, it is not recommended to use 0 sec. for soft start, due to higher inrush current.

Chapter 3

Environmental tests - Climatic

Test	Specification	Comment
Cold test	EN60068-2-1 (Ab) EN60068-2-1 (Ad)	Storage at low temperature: Temperature: $-40^{\circ} \mathrm{C}$ Duration: 72h Not connected Tested at room temperature. Storage at low temperature: Temperature: $-30^{\circ} \mathrm{C}$ Duration: 2 h Actuator is not activated/connected Tested at low temperature.
Dry Heat	EN60068-2-2 (Bb) EN60068-2-2 (Bd)	Storage at high temperature: Temperature: $+90^{\circ} \mathrm{C}$ Duration: 72h Actuator is not activated/connected. Tested at room temperature Storage at high temperature: Temperature: $+70^{\circ} \mathrm{C}$ Duration: 1000h Actuator is not activated/connected Tested at high temperature. Operating at high temperature: Temperature: $+60^{\circ} \mathrm{C}$ Int. max. 17\% Duration:700h Actuator is activated Tested at high temperature.
Change of temperature	EN60068-2-14 (Na) EN60068-2-14 (Nb)	Rapid change of temperature: High temperature: $+100^{\circ} \mathrm{C}$ in 60 minutes. Low temperature: $-30^{\circ} \mathrm{C}$ in 60 minutes. Transition time: <10 seconds Duration: 100 cycles Actuator is not activated/connected. Tested at room temperature. Controlled change of temperature: Temperature change $5^{\circ} \mathrm{C}$ pr. minute High temperature: $+70^{\circ} \mathrm{C}$ in 60 minutes. Low temperature: $-30^{\circ} \mathrm{C}$ in 30 minutes. 130 minutes pr. Cycle. Duration: 1.000 cycles (90days) Actuator is not activated/connected. Tested at 250, 500 and 1,000 cycles at low and high temperatures.
Damp heat	EN60068-2-30 (Db) EN60068-2-3 (Ca)	Damp heat, Cyclic: Relative humidity: 93-98\% High temperature: $+55^{\circ} \mathrm{C}$ in 12 hours Low temperature: $+25^{\circ} \mathrm{C}$ in 12 hours Duration: 21 cycles * 24 hours Actuator is not activated/connected Tested within 1 hour after condensation, That means after upper temperature has been reached. Damp heat, Steady state: Relative humidity: 93-95\% Temperature: $+40 \pm 2^{\circ} \mathrm{C}$ Duration: 56 days Actuator is not activated/connected. Tested within one hour after exposure.
Salt mist.	EN60068-2-52 (Kb)	Salt spray test: Salt solution: 5\% sodium chloride (NaCl) 4 spraying periods, each of 2 hours. Humidity storage 7 days after each. Actuator not activated/connected. Exposure time: 500 hours

Environmental tests - Climatic

Degrees of protection	EN60529 - IP66 DIN40050 - IP69K	IP6X - Dust: Dust-tight, No ingress of dust. Actuator is not activated. IPX6 - Water: Ingress of water in quantities causing harmful effects is not allowed. Duration: 100 litres pr. minute in 3 minutes Actuator is not activated. IPX6 -Connected actuator: Actuator is driving out and in for 3 min . $100(1 / \mathrm{min})$ jet of water is placed at the wiper ring for $3(\mathrm{~min})$. IPX6 -Connected actuator and push 6800 (N) Actuator is driving out and in for 3 min. and Push 6800(N) at the end-pos. 100 (l/min.) jet of water is placed at the wiper ring for 3 min . High pressure cleaner: Water temperature: $+80^{\circ} \mathrm{C}$ Water pressure: 80 bar Spray angle: 45° Spray distance: 100 mm Duration: From any direction 10 seconds of spraying followed by 10 seconds rest. Actuator is not activated. Ingress of water in quantities causing harmful effects is not allowed.
	DUNK test	The actuator has been warmed up to $115^{\circ} \mathrm{C}$ for 20 hours. After this it is cooled down in $20^{\circ} \mathrm{C}$ saltwater. Cooling time: 5 minutes Opened for checking salt deposit and water.
Chemicals	BS7691 / 96hours	Diesel 100\% Hydraulic oil 100\% Ethylene Glucol 50\% Urea Nitrogen saturated solution Liquid lime 10\% (Super- Cal) NPK Fertilizer (NPK 16-4-12) saturated Tested for corrosion.

Environmental tests - Mechanical

Test	Specification	Comment
Free fall	EN60068-2-36 (Fdb)	Free fall from all sides: Height of fall: 0.4 meter onto steel. Actuator not activated/connected.
Vibration	Random vibration: Short time test:6.29g RMS Actuator is not connected Long time test: 7.21 g RMS Actuator is not connected Duration: 2 hours in each direction	
EN 60068-2-6 (Fc)	Sinus vibration: Frequency $5-25 \mathrm{Hz:} \mathrm{Amplitude}=3.3 \mathrm{~mm}$ pp Frequency 25-200Hz: Acceleration 4g Number of directions: 3 (X-Z-Y) Duration: 2 hours in each direction. Actuator is not activated	
Bump		EN60068-2-29 (Eb) Bump test: Level: 40 g Duration: 6 milliseconds Number of bumps: 500 shocks in each of 6 directions. Actuator is not connected. Shock

Environmental tests - Electrical

Test	Specification	Comment
Power supply	ASAE EP455 (1990)	Operating voltages $+10 \mathrm{~V}-+16 \mathrm{~V}$ Over voltage $+26(\mathrm{~V}) / 5 \mathrm{~min}$. Reverse polarity $-26(\mathrm{~V}) / 5 \mathrm{~min}$. Short circuit to ground $16(\mathrm{~V}) / 5 \mathrm{~min}$. Short circuit to supply $16(\mathrm{~V}) / 5 \mathrm{~min}$.
HF-immunity	EN61000-6-2	Level: $30 \mathrm{~V} / \mathrm{m}$. at $26 \mathrm{MHz}-1000 \mathrm{mHz}$ $80 \% 1 \mathrm{KHz}$
Emission	EN61000-6-4	Level is inside limits for 12 V motor
Automotive transients	ISO 7637	Load dump test only accepted on motor power connection.
IECEx / ATEX (Ex)	EN60079-0:2012 EN60079-31:2014	This Ex certification allows the actuator to be mounted in Ex dust areas: II $2 \mathrm{D} \mathrm{Ex} \mathrm{tb} \mathrm{IIIC} \mathrm{T135} \mathrm{C}$ Db Tamb -25 ${ }^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Regulation No. 10	Directive on electromagnetic compatibility of sub-assembly for automotive applications	

(1) All electrical tests are conducted and radiated emission (EMC) tests.

Terms of use
The user is responsible for determining the suitability of LINAK products for specific application. LINAK takes great care in providing accurate and up-to-date information on its products.
However, due to continuous development in order to improve its products, LINAK products are subject to frequent modifications and changes without prior notice. Therefore, LINAK cannot guarantee the correct and actual status of said information on its products.
While LINAK uses its best efforts to fulfil orders, LINAK cannot, for the same reasons as mentioned above, quarantee the availabilt of any particular product. Therefore, LINAK reserves the right to discontinue the sale of any product displayed on its website or listed in its catalogues or other written material drawn up by LINAK.
All sales are subject to the Standard Terms of Sale and Delivery for LINAK. For a copy hereof, please contact LINAK.

